Obtaining reliable phase-gradient delays from otoacoustic emission data.

نویسندگان

  • Christopher A Shera
  • Christopher Bergevin
چکیده

Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cochlear reflectivity in transmission-line models and otoacoustic emission characteristic time delays.

In transmission-line models of cochlear mechanics, predictions about otoacoustic-emission delays depend on the place- or wave-fixed nature of the emission generation mechanism. In this work, transient evoked otoacoustic emissions (TEOAEs), recorded at different stimulus levels in 10 young subjects, were analyzed using wavelet-based time-frequency analysis to determine the latency of each freque...

متن کامل

Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.

Lizard ears produce otoacoustic emissions with characteristics often strikingly reminiscent of those measured in mammals. The similarity of their emissions is surprising, given that lizards and mammals manifest major differences in aspects of inner ear morphology and function believed to be relevant to emission generation. For example, lizards such as the gecko evidently lack traveling waves al...

متن کامل

Measuring stimulus-frequency otoacoustic emissions using swept tones.

Although stimulus-frequency otoacoustic emissions (SFOAEs) offer compelling advantages as noninvasive probes of cochlear function, they remain underutilized compared to other evoked emission types, such as distortion-products (DPOAEs), whose measurement methods are less complex and time-consuming. Motivated by similar advances in the measurement of DPOAEs, this paper develops and characterizes ...

متن کامل

Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.

It has been proposed that OAEs be classified not on the basis of the stimuli used to evoke them, but on the mechanisms that produce them (Shera and Guinan, 1999). One branch of this taxonomy focuses on a coherent reflection model and explicitly describes interrelationships between spontaneous emissions (SOAEs) and stimulus-frequency emissions (SFOAEs). The present study empirically examines SOA...

متن کامل

Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models.

A nonlinear and non-local cochlear model has been efficiently solved in the time domain numerically, obtaining the evolution of the transverse displacement of the basilar membrane at each cochlear place. This information allows one to follow the forward and backward propagation of the traveling wave along the basilar membrane, and to evaluate the otoacoustic response from the time evolution of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 132 2  شماره 

صفحات  -

تاریخ انتشار 2012